ANSWERS: Decomposition

1) \(\text{Cu(OH)}_2(s) \rightarrow \text{CuO(s)} + \text{H}_2\text{O(g)} \)
This goes from blue to a black powder, and condensation (a colourless liquid) may form. The condensation can be tested with cobalt chloride paper which will turn from blue to pink. \(\text{Na}_2\text{CO}_3 \) does not decompose so no colour change will be observed and no gases will be formed.

\(2\text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{H}_2\text{O(g)} + \text{CO}_2(g) \)

\(\text{NaHCO}_3 \) is a white powder that will decompose to form a white powder. Two gases will form. (Or condensation (a colourless liquid) may form.) One will turn limewater milky / extinguish burning splint / turn damp blue litmus red, and the other would turn cobalt chloride paper from blue to pink.

2) **Products formed:**
Copper oxide and carbon dioxide

Observations:
The green copper (II) carbonate powder turns black and loses mass when heated. The powder appears to be a boiling liquid as a gas is released.

Use of limewater:
Limewater is used to positively identify the presence of carbon dioxide gas, \(\text{CO}_2 \). Limewater is calcium hydroxide (\(\text{Ca(OH)}_2 \)). Insoluble calcium carbonate forms, turning limewater milky.

\[\text{Ca(OH)}_2(aq) + \text{CO}_2(g) \rightarrow \text{CaCO}_3(s) + \text{H}_2\text{O(l)} \]

Fate of carbonate ions:
Breaks down into carbon dioxide gas and an oxide ion (forming copper oxide with the copper.)

Decomposition Equation:

\[\text{CuCO}_3 \rightarrow \text{CuO} + \text{CO}_2 \]

3) **Catalyst:**
manganese dioxide OR potassium iodide OR animal liver OR potato OR Iron III oxide.

Description of observations:
When the catalyst is added to the colourless hydrogen peroxide solution, bubbling is observed as a gas is released. The reaction mix heats up. The volume of gas produced is high initially but slows down over time.

Amount of catalyst:
A catalyst is a chemical that speeds up the rate of a reaction but which is not consumed by the reaction. (As the catalyst is constantly being reused only a small amount is required.)

Catalytic decomposition over time:
The decomposition of hydrogen peroxide with a catalyst occurs very quickly at first, with a lot of oxygen gas released in a short period of time. As the reaction proceeds, there is less hydrogen peroxide available to react so less oxygen gas is able to be produced. (The rate of the reaction slows.) Until eventually almost all/all of the hydrogen peroxide has decomposed and no more oxygen will be produced.

4)

<table>
<thead>
<tr>
<th>Carbonate</th>
<th>Colour before heating</th>
<th>Colour after heating</th>
<th>Gas evolved</th>
<th>Ease of decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium carbonate</td>
<td>white</td>
<td>white</td>
<td>none</td>
<td>(Very) difficult /doesn’t decompose</td>
</tr>
<tr>
<td>Zinc carbonate</td>
<td>white</td>
<td>white (when cool)/ yellow (when hot)</td>
<td>Carbon dioxide</td>
<td>easily</td>
</tr>
<tr>
<td>Copper carbonate</td>
<td>green</td>
<td>black</td>
<td>Carbon dioxide</td>
<td>(Very) easily</td>
</tr>
</tbody>
</table>

The carbonates that can be thermally decomposed form similar products. They form metal oxides and carbon dioxide. The oxide loses mass as a gas (carbon dioxide) is lost. For example white zinc carbonate powder when heated forms yellow/white zinc oxide and carbon dioxide gas:

\[\text{ZnCO}_3 \rightarrow \text{ZnO} + \text{CO}_2 \]

And when green copper carbonate powder is heated it forms black copper oxide and carbon dioxide gas:

\[\text{CuCO}_3 \rightarrow \text{CuO} + \text{CO}_2 \]

We know the gas formed is carbon dioxide because the limewater will turn milky/cloudy. White sodium carbonate powder does not decompose on heating so there will be no change. The white powder will remain.

5) As it is heated, the copper(II) carbonate decomposes to form copper(II) oxide, which is a black powder, and carbon dioxide. (Which is unlikely to be seen as it is a colourless gas.) The observation given (burning splint goes out) indicates that a gas is given off that does not support combustion. This gas is the carbon dioxide.

\[\text{CuCO}_3(s) \rightarrow \text{CuO}(s) + \text{CO}_2(g) \]
6) Copper(II) hydroxide, when heated, undergoes thermal decomposition. It is broken down into copper(II) oxide and water. Solid blue copper(II) hydroxide turns into a black solid when heated. It has formed copper(II) oxide, CuO, (accept powder or crystals in lieu of solid). The blue cobalt chloride paper turned pink because water vapour / gas is formed in this reaction.

\[
\text{Cu(OH)}_2(s) \rightarrow \text{CuO(s)} + \text{H}_2\text{O(g)}
\]

7) calcium carbonate \rightarrow calcium oxide + carbon dioxide

8) (a) Thermal decomposition
(b) The zinc hydroxide is a white powder. When heated, the white powder turns yellow and as it cools turns white, this is zinc oxide. Condensation (a colourless liquid) may form on the side of the test tube/steam forms (not gas or water vapour). A loss in the mass of the solid may be noticed.

9) Sodium carbonate : white powder
 Calcium carbonate : white powder
 Copper carbonate : green powder
 (i) Sodium carbonate: no reaction / still a white powder.
 (ii) Calcium carbonate: gas given off / no apparent change
 (iii) Copper carbonate: gas given off / powder turns black.
 (If CO$_2$ gas = accept. Do not accept CO$_2$ on its own – this is an inference not an observation.)
 (Accept effervescence.)

\[
\text{CuCO}_3(s) \rightarrow \text{CuO(s)} + \text{CO}_2(g)
\]

10) lead hydroxide \rightarrow lead oxide + water

11) copper hydroxide \rightarrow copper oxide + water

12) The green solid turns black/brown. Limewater turns milky.

\[
\text{CuCO}_3(s) \rightarrow \text{CuO(s)} + \text{CO}_2(g)
\]